Absolute Convergence of Fourier Series of Convolution Functions

MASAKO IZUMI AND SHIN-ICHI IZUMI

Australian National University, Box 4, P.O. Canberra, A.C.T., Australia

1. INTRODUCTION

1.1. We shall consider functions integrable on $(0, 2\pi)$ and periodic with period 2π . Then the following theorem is known:

THEOREM I. Let f be a continuous function. If there are two squarely integrable functions g and h such that

$$f(x) = \frac{1}{\pi} \int_0^{2\pi} g(x+t) h(t) dt,$$
 (1)

then the Fourier series of f converges absolutely. The converse holds also.

This theorem is due to Riesz ([1], I, p. 251 and [2], II, p. 184) and Chen [3]. The integral in (1) is called the convolution of g and h, and is denoted by

$$f(x) = (g * h)(x).$$

We shall ask whether we can make the condition for g weaker and the condition for h stronger in the first part of Theorem I.

We shall introduce a subclass of L^p $(p \ge 1)$, defined by Hardy and Littlewood ([1] and [2]). If a function $g \in L^p$ satisfies the condition, for an a $(0 < a \le 1)$,

$$\exists A: \left(\int_0^{2\pi} |g(x+t) - g(x)|^p \, dx \right)^{1/p} \leq A |t|^a \quad \text{as } t \to 0, \tag{2}$$

then we say that g belongs to the class Lip(a,p). Evidently, $Lip(a,p) \subseteq L^p$ and the class Lip(a,p) becomes larger when a or p decreases.

Chen [4] has proved the following:

THEOREM II. If $g \in Lip(a, p)$ and $h \in Lip(b, q)$ with

$$1 , $q > 1$ and $a > b = 1/2p$,$$

then the function f = g * h has an absolutely convergent Fourier series.

Further, Yadav [5] proved

THEOREM III. If $g \in Lip(a, p)$ and $h \in Lip(b, q)$ with

$$1 , $1/p + 1/q = 1$ and $a + b > 1/p$,$$

then the function f = g * h has an absolutely convergent Fourier series.

In these theorems neither the condition for g nor that for h is weaker than square integrability and both of a and b cannot become small when p and q approach 2.

1.2. We prove the following theorems:

THEOREM 1. Let 1 and <math>1/p + 1/q = 1. If $g \in L^p$ and $h \in L^p$ and if, further,

$$\int_0^1 \frac{(\omega_p(t;h))^q}{t^{q-1}} dt < \infty \tag{3}$$

where $\omega_p(t;h)$ denotes the L^p , modulus of continuity of the function h, defined by

$$\omega_p(t;h) = \sup_{0 < u \le t} \left(\int_0^{2\pi} |h(x+u) - h(x)|^p \, dx \right)^{1/p}, \tag{4}$$

then the function f = g * h has an absolutely convergent Fourier series.

If $h \in \text{Lip}(a, p)$, then, by (2) and (4),

$$\omega_p(t;h) = O(t^a)$$
 as $t \to 0$.

If a > (2 - p)/p, then condition (3) is satisfied. Thus we get

COROLLARY 1. Let $1 . If <math>g \in L^p$ and $h \in Lip(a,p)$ with a > (2-p)/p, then the function f = g * h has an absolutely convergent Fourier series.

In this corollary, if p is near 1, then (2-p)/p is also near 1, and then a must also be near 1. If p is near 2, then (2-p)/p is near zero and a can also be taken near zero.

In Theorem 1, we take g = h and suppose that they satisfy condition (3). Then Theorem 1 gives

COROLLARY 2. A function $h \in L^p$ $(1 , satisfying condition (3), is in <math>L^2$. This shows that the condition for h in Theorem 1 is stronger than square integrability. This is quite natural. Combining Corollaries 1 and 2, we see that $\operatorname{Lip}(a,p) \subset L^2$ for 1 and <math>a > (2-p)/p. This is a special case of a theorem of Hardy and Littlewood [8].

THEOREM 2. Theorem 1 need not be true when the integral (3) diverges. In particular, if a = (2 - p)/p, then Corollary 1 does not hold in general.

THEOREM 3. In Corollary 1, the class Lip(a,p) of h cannot be replaced by any L^s (s > 2). That is, for any p, 1 , and any <math>s > 2, there are $g \in L^p$ and $h \in L^s$ such that the Fourier series of f = g * h does not converge absolutely.

104

Let us now consider the limiting cases $p \rightarrow 1$ and $p \rightarrow 2$ in Corollary 1. If $p \rightarrow 1$, then the assumptions on g and h become

$$g \in L^1$$
 and $h \in \text{Lip}(1, 1)$.

It is known that Lip(1,1) is identical with BV (the class of functions of bounded variation). These conditions are not sufficient for absolute convergence of the Fourier series of g * h. On the other hand, if $p \rightarrow 2$ in Corollary 1, then the assumptions become

$$g \in L^2$$
 and $h \in \lim_{a \to 0} \operatorname{Lip}(a, 2).$

The last class is a proper subclass of L^2 and so this case is a particular case of Theorem I.

THEOREM 4. Let 1 and <math>c > 0. If $g \in L^p$ and $h \in L^p$ satisfy the conditions

$$\sum_{n=-\infty}^{\infty} \frac{|c_n(g)|^p}{\log\left(|n|+2\right)} < \infty$$
(5)

where $c_n(g)$ is the nth (complex) Fourier coefficient of the function g, and¹

$$\omega_{p}(t;h) \leq A / \left(\log \frac{1}{t} \right)^{1+c}, \tag{6}$$

then the Fourier series of f = g * h converges absolutely.

1.3. Theorem 1, 4 and III are special cases of the following key theorem:

THEOREM 5. Let 1 , <math>1/p + 1/q = 1, and let $\lambda(t)$ be a positive monotone (increasing or decreasing) function for t > 0 such that

$$\exists A'' > A' > 0: A'' > \lambda(t) / \lambda(2t) > A' \quad for all \ t > 0.$$
(7)

If $g \in L^p$ and $h \in L^p$ satisfy the conditions

$$\sum_{n=1}^{\infty} |c_n(g)|^p (\lambda(n))^p < \infty$$
(8)

and

$$\int_{0}^{1} \frac{(\omega_{p}(t;h))^{q}}{t(\lambda(1/t))^{q}} dt < \infty,$$
(9)

then the function f = g * h has an absolutely convergent Fourier series.

For the proof of this theorem, we use the following lemma due to Leindler [7] (cf. [6]).

 $^{^{1}}$ A is used to denote an absolute constant which is different in different occurrences.

LEMMA. Let 1 and <math>1[p + 1]q = 1. If $f \in L^p$, then

$$\sum_{n=1}^{\infty} \frac{1}{\mu(n)} \sum_{m=n}^{\infty} |c_m(f)|^q \le A \int_0^1 \frac{dt}{t^2 \mu(1/t)} \left(\int_0^{2\pi} |f(x+t) - f(x-t)|^p \, dx \right)^{q/p}, \quad (10)$$

where

--

(i) $\mu(t)$ is defined for t > 0, positive, monotone (increasing or decreasing) and satisfies condition (7), or more generally,

(ii) $\mu(t)$ is positive for t > 0 and

$$\exists A'' > A' > 0 : A' \mu(2^{k-1}) < \mu(t) < A'' \mu(2^k)$$
(11)

for all t in the interval $(2^{k-1}, 2^k)$ and for all k = 1, 2, ...

The case (i) is proved in [7] and more simply in [6]. The case (ii) is not stated explicitly in [6], but the proof given there still applies. A useful special case of (ii) is that

(iii) there are $\lambda_1(t)$ and $\lambda_2(t)$ defined for t > 0 such that $\mu(t) = \lambda_1(t) \lambda_2(t)$, $\lambda_1(t)$ is monotone increasing, $\lambda_2(t)$ is monotone decreasing and both of them satisfy condition (7).

2. Proof of Theorem 5. By (1), we have

$$c_n(f) = c_n(g) \cdot c_n(h)$$
 for all n .

Without loss of generality, we can suppose that $c_n(g)$ and $c_n(h)$ vanish for all negative *n*. By Hölder's inequality,

$$\sum_{n=1}^{\infty} |c_n(f)| \leq \left(\sum_{n=1}^{\infty} |c_n(g)\lambda(n)|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |c_n(h)/\lambda(n)|^q\right)^{1/q}.$$

Since the first factor is finite by assumption (8), it is sufficient to prove that the second factor on the right side is finite. By condition (7),

$$\sum_{m=1}^{\infty} |c_n(h)|^q (\lambda(n))^{-q} = \sum_{k=1}^{\infty} \sum_{n=2^{k-1}}^{2^{k-1}} |c_n(h)|^q (\lambda(n))^{-q}$$

$$\leq A \sum_{k=1}^{\infty} \frac{1}{(\lambda(2^k))^q} \sum_{n=2^{k-1}}^{2^{k-1}} |c_n(h)|^q \leq A \sum_{k=1}^{\infty} \frac{1}{(\lambda(2^k))^q} \sum_{n=2^{k-1}}^{\infty} |c_n(h)|^q$$

$$\leq A \sum_{n=1}^{\infty} \frac{1}{n(\lambda(n))^q} \sum_{m=n}^{\infty} |c_m(h)|^q.$$

Now we want to use the lemma, taking $\mu(t) = t(\lambda(t))^q$. If $\lambda(t)$ is increasing, then so is $t(\lambda(t))^q$ and then condition (i) of the lemma is applicable. But if $\lambda(t)$ decreases, then condition (iii) holds by (7). Therefore the last sum is

$$\leq A \int_0^1 \frac{dt}{t(\lambda(1/t))^a} \left(\int_0^{2\pi} |h(x+t) - h(x-t)|^p \, dx \right)^{p/a}.$$

By (4) we get

$$\sum_{n=1}^{\infty} |c_n(h)|^q (\lambda(n))^{-q} \leq A \int_0^1 \frac{\omega^p(t;h)^q}{t(\lambda(1/t))^q} dt$$

where the right-side integral is finite by condition (9). This proves Theorem 5.

3. Proof of Theorems 1, 4 and III.

3.1. For the proof of Theorem 1, we use the following lemma due to Hardy and Littlewood ([1], II, p. 109).

LEMMA. If $g \in L^p$ (1 , then

$$\sum_{n=1}^{\infty} |c_n(g)|^p n^{p-2} \leq A \int_0^{2\pi} |g(x)|^p dx.$$

We take $\lambda(t) = t^{1-2/p}$ in Theorem 5, then condition (7) holds. Condition (8) follows from $g \in L^p$ and the lemma. Since

$$t\lambda(1/t)^q = t^{q-1},$$

condition (9) becomes condition (3). Thus we get Theorem 1 as a special case of Theorem 5.

3.2. In order to prove Theorem 4, we take $\lambda(t) = \log^{-1/p} (1/t + 2) (t > 0)$, then condition (7) is satisfied. Condition (8) reduces to condition (5). If we assume (6), then

$$\int_0^1 \frac{(\omega_p(t;h))^q}{t(\lambda(1/t))^q} \, dt < A \, \int_0^1 \frac{dt}{t(\log(1/t))^{1+cq}} < \infty.$$

Hence condition (9) of Theorem 5 is satisfied. Thus Theorem 4 is a corollary of Theorem 5.

3.3. We shall derive Theorem III from Theorem 5. In the case $a \ge 1/p$, $\sum |c_n(g)| < \infty$ and then $\sum |c_n(f)| < \infty$. Hence the Fourier series of f * g converges absolutely. In the contrary case, we take $\lambda(t) = t^{-s}$ for s > (1 - ap)/p. Since $g \in \text{Lip}(a, p)$ implies

$$c_n(g)=O(1/n^a),$$

we have

$$\sum |c_n(g)|^p (\lambda(n))^p \leq A \sum \frac{1}{n^{ap+sp}} < \infty.$$

$$\int_0^1 \frac{(\omega_p(t;h))^q}{t(\lambda(1/t))^q} \, dt < A \int_0^1 \frac{t^{bq}}{t^{1+sq}} \, dt$$

which is finite when 1 + sq - bq < 1, i.e., s < b. An s with this property can be selected if a + b > 1/p.

4. Proof of Theorems 2 and 3.

4.1. For the proof of Theorem 2, we consider the function

$$h(t) = |t|^{-r} \quad \text{for } |t| < \pi, \tag{11}$$
$$= h(t + 2\pi) \quad \text{for all } t.$$

Then $h \in \text{Lip}(a, p)$ for a = (1/p) - r and $c_n(h)$ is exactly of order $|n|^{r-1}$ as $n \to \infty$ ([1], I, p. 190). Suppose that a = (2-p)/p, that is, r = 1/q, then

$$|c_n(h)| \cong A|n|^{r-1} = A|n|^{-1/p}.$$

Now we use the following lemma due to Hardy and Littlewood ([1], II, p. 129).

LEMMA. Suppose that $c_n(g) = 0$ for n < 0 and $c_n(g)$ decreases monotonically to zero as $n \to \infty$. Then $g \in L^p$ if and only if

$$\sum \left[\mathcal{C}_n(g) \right]^p n^{p-2} < \infty.$$

By this lemma, there is a function $g \in L^p$ such that

$$c_n(g) = 1/n^{1/q} \log (n+1) \quad \text{for } n > 0,$$

= 0 otherwise. (12)

For the functions g and h defined by (11) and (12), we have

$$\sum_{n=1}^{\infty} |c_n(f)| = \sum_{n=1}^{\infty} |c_n(g)| \cdot |c_n(h)|$$
$$\cong A \sum_{n=1}^{\infty} \frac{1}{n^{1/q} \log(n+1)} \cdot \frac{1}{n^{1/p}} = A \sum_{n=1}^{\infty} \frac{1}{n \log(n+1)} = \infty$$

Thus the Fourier series of f = g * h does not converge absolutely. This proves the second part of Theorem 2. The first part is now also evident, since integral (3) diverges for h defined by (11) with r = 1/q.

4.2. The following is known ([1], I, p. 215):

LEMMA. There is a sequence (ϵ_n) of signs such that the series

$$\sum_{n=1}^{\infty} \frac{\epsilon_n e^{inx}}{\sqrt{n} \log (n+1)}$$
(13)

belongs to every L^{s} (s > 0).

We define g by (12) and h as the sum (13). Then

$$\sum |c_n(f)| = \sum |c_n(g)| \cdot |c_n(h)| = \sum \frac{1}{n^{1/q} \log (n+1)} \cdot \frac{1}{\sqrt{n} \log (n+1)}$$
$$= \sum \frac{1}{n^{(1/2)+(1/q)} (\log (n+1))^2} = \infty,$$

since 1/2 + 1/q < 1. Thus we get Theorem 3.

ACKNOWLEDGMENT

Finally we would like to express our hearty thanks to Professor G. G. Lorentz for his kind adivce.

REFERENCES

- 1. A. ZYGMUND, "Trigonometric Series, I, II." Cambridge Univ. Press, London and New York, 1959.
- 2. N. BARI, "Treatise on Trigonometric Series." Macmillan (Pergamon), 1964.
- 3. K. K. CHEN, On the class of functions with absolutely convergent Fourier series, Proc. Imperial Acad., Japan, 4 (1928), 517.
- 4. M. T. CHEN, The absolute convergence of Fourier series. Duke Math. J.9 (1942), 803-810.
- 5. B. S. YADAV, On the class of Young's continuous functions II. Mat. Vesnik, 1 (1965), 299-302.
- 6. M. AND S. IZUMI, On the Leindler's theorem. Proc. Japan. Acad., 42 (1966) 533-534.
- 7. L. LEINDLER, Uber verschiedene Konvergenzarten der trigonometrische Reihen, II. Acta Sci. Math., 26 (1965), 117-124.
- 8. G. H. HARDY AND J. E. LITTLEWOOD, A convergence criterion for Fourier series. *Math. Z.* 28 (1928), 612–634.