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1. INTRODUCTION

1.1. We shall consider functions integrable on (O,21T) and periodic with
period 21T. Then the following theorem is known:

THEOREM I. Letf be a continuousfunction. If there are two squarely integrable
functions g and h ~uch that

1 f2IT
f(x) = - g(x + t) h(t) dt,

1T 0

then the Fourier series off converges absolutely. The converse holds also.
This theorem is due to Riesz ([1], I, p. 251 and [2], II, p. 184) and Chen [3].

The integral in (1) is called the convolution of g and h, and is denoted by

f(x) = (g * h)(x).

We shall ask whether we can make the condition for g weaker and the con­
dition for h stronger in the first part of Theorem I.

We shall introduce a subclass ofU (p ~ 1), defined by Hardy and Littlewood
([1] and [2]). If a function g E U satisfies the condition, for an a (0 < a;;;; 1),

( r.
2IT )1/1'

3A:.
o

Ig(x+t)-g(x)jPdx ;;;;Altl a as t -0, (2)

then we say that g belongs to the class Lip(a,p). Evidently, Lip (a,p) C U and
the class Lip(a,p) becomes larger when a or p decreases.

Chen [4] has proved the following:

THEOREM II. Ifg E Lip (a,p) and hE Lip (b,q) with

1 <p < 2, q>l and a>b= 1/2p,

then the functionf = g * h has an absolutely convergent Fourier series.
Further, Yadav [5] proved
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(4)

(3)

THEOREM III. Ifg ELip(a,p) and h ELip(b,q) Il'ith

1 <p<2, L'p+ liq= 1 and a-':--b> lp,

then thefunctionf= g * h has an absolutely conl'ergent Fourier series.
In these theorems neither the condition for g nor that for h is weaker than

square integrability and both of a and b cannot become small when p and q
approach 2.

1.2. We prove the following theorems:

THEOREM 1. Let 1 <p < 2 and l!p + 1!q = 1. If g E U and h E U and if,
further,

[

1 (w (t'h»q
P '( dt < -x
tq ­,,0

where wp(t; h) denotes the U,modulus ofcontinuity of the function h, defined by

(
r21T ,

W p(t;h) = o~~~t.'o /h(x + u) - h(x)/Pdx)LP,

then thefunctionf= g * h has an absolutely convergent Fourier series.
If hE Lip (a,p), then, by (2) and (4),

wp(t;h)=O(ta) as t--+O.

If a> (2 - p)!p, then condition (3) is satisfied. Thus we get

COROLLARY 1. Let 1 < p < 2. Ifg E U and h E Lip (a,p) with a> (2 - p),:p,
then thefunctionf= g * h has an absolutely conrergent Fourier series.

In this corollary, ifp is near 1, then (2 - p)!p is also near 1, and then a must
also be near 1. If p is near 2, then (2 - p)!p is near zero and a can also be
taken near zero.

In Theorem 1, we take g = h and suppose that they satisfy condition (3).
Then Theorem 1 gives

COROLLARY 2. Afunction h E U (l < p < 2), satisfying condition (3), is in U.
This shows that the condition for h in Theorem 1 is stronger than square

integrability, This is quite natural. Combining Corollaries 1 and 2, we see
that Lip(a,p) C L2 for 1 < p < 2 and a> (2 - p)!p. This is a special case of a
theorem of Hardy and Littlewood [8].

THEOREM 2. Theorem 1 need not be true when the integral (3) diverges. In
particular, ifa = (2 - p)!p, then Corollary 1 does not hold in general.

THEOREM 3. In Corollary 1, the class Lip (a,p) ofh cannot be replaced by any
L" (s> 2). That is, for any p, 1 < p < 2, and any s> 2, there are g E LP and
hE L' such that the Fourier series off= g * h does not converge absolutely.
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Let us now consider the limiting cases p -+ 1 and p -+ 2 in Corollary 1.
Ifp -+ 1, then the assumptions on g and h become

gEL! and hELip(1,l).

It is known that Lip (1, 1) is identical with BV (the class of functions of bounded
variation). These conditions are not sufficient for absolute convergence of the
Fourier series of g * h. On the other hand, if p -+ 2 in Corollary 1, then the
assumptions become

g E L 2 and hE lim Lip (a, 2).
a-.O

The last class is a proper subclass of L 2 and so this case is a particular case of
Theorem I.

THEOREM 4. Let 1 < p < 2 and c > O. Ifg E U and h E U satisfy the conditions

(5)

where cn(g) is the nth (complex) Fourier coefficient of the function g, and!

(6)

then the Fourier series off= g * h conrerges absolutely.

1.3. Theorem 1,4 and III are special cases of the following key theorem:

THEOREM 5. Let 1 < P < 2, 1ip + ljq = I, and let Nt) be a positire monotone
(increasing or decreasing) function for t> 0 such that

3A" > A' > 0: A" > ,\(t)/,\(2t) > A'

Ifg E U and h E U satisfy the conditions

'"L \cn(g)I" ('\(n))p < en
n~!

and

for all t > O. (7)

(8)

(9)

then thefunctionf= g * h has an absolutely convergent Fourier series.
For the proof of this theorem, we use the following lemma due to Leindler

[7] (cf. [6]).

1 A is used to denote an absolute constant which is different in different occurrences.
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LEMMA. Let 1 < p < 2 and Ip + l'q = 1. rff EO LV, then

(10)

where
(i) fL(t) is defined for t > 0, positi!;e, monotone (increasing or decreasing)

and satisfies condition (7), or more generally,
(ii) fL(t) is positive for t> 0 and

3 A" > At > 0: At fL(2k - 1) < fL(t) < A" fL(2k) (11)

for all t in the interval (2k - 1,2k ) andfor all k = 1, 2, ....

The case (i) is proved in [7] and more simply in [6). The case (ii) is not stated
explicitly in [6), but the proof given there still applies. A useful special case of
(ii) is that

(iii) there are At(t) and Ait) defined for t > 0 such that fL(t) = At{t) Ait),
At(t) is monotone increasing, Ait) is monotone decreasing and both of them
satisfy condition (7).

2. ProofofTheorem 5. By (1), we have

cn(j) = cn(g)' cn(h) for all n.

Without loss of generality, we can suppose that Cn (g) and Cn (h) vanish for all
negative n. By Holder's inequality,

J1Icn(f)/ ~ (1 Icn (g)A(n)i P)'/P (J1Icn(h)!A(nW)IQ.

Since the first factor is finite by assumption (8), it is sufficient to prove that the
second factor on the right side is finite. By condition (7),

<Xl 0:;, 2k-1

L ICn (h)IQ (A(n»-Q = L L len (hW (A(nWq
m=1 k~l n~2k-l

'" I x

~ A ""----- "" Ie (hW·- L. n(A(n»Q L. m
n=l m=n

Now we want to use the lemma, taking fL(t) = t(A(t))q. IfA(t) is increasing, then
so is t(A(t»q and then condition (i) of the lemma is applicable. But if A(t)
decreases, then condition (iii) holds by (7). Therefore the last sum is

t dt ((2" )PIQ
~ A Jo t(>..(I/t»tl Jo jh(x + t) - hex - t)jP dx .



By (4) we get
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00 t wP(t·w
n~IICn (hW (A(n)tll ~ A Jo t(A(1it))1l dt

where the right-side integral is finite by condition (9). This proves Theorem 5.

3. Proof of Theorems 1,4 and III.

3.1. For the proof ofTheorem 1, we use the following lemma due to Hardy
and Littlewood ([1], II, p. 109).

LEMMA. Ifg E U (1 < p ~ 2), then

<II "2"L Icn(g)I P nP
-

2 ~ A I !g(x)iPdx.
n-I .0

We take ACt) = t l - 2lp in Theorem 5, then condition (7) holds. Condition (8)
follows from g E U and the lemma. Since

tA(1/t)1l = til-I,

condition (9) becomes condition (3). Thus we get Theorem 1 as a special case
of Theorem 5.

3.2. In order to prove Theorem 4, we take A(t) = log-liP (l!t + 2) (t> 0),
then condition (7) is satisfied. Condition (8) reduces to condition (5). If we
assume (6), then

II(wp(t;h))1l II dt
~-:-:-:--:-:- dt < A I . < oc..

o t(A(1/t))1l 0 t(log(1/t)) Tell

Hence condition (9) of Theorem 5 is satisfied. Thus Theorem 4 is a corollary
ofTheorem 5.

3.3. We shall derive Theorem III from Theorem 5. In the case a ~ lip,
2: Icn(g)1 < 00 and then 2:lcn(f)j < 00. Hence the Fourier series of !*g
converges absolutely. In the contrary case, we take A(t) = r s for s > (1 - ap)/p.
Since g E Lip (a,p) implies

we have

2:lcn(g)iP(A(n))p ~ A L na;+sp < 00.

Thus condition (8) ofTheorem 5 is satisfied. The integral of(9) is

f' (wp (t;h))1l t tbll

Jo t(A(l/t))1l dt < A Jo tl+sll dt

which is finite when 1 + sq - bq < 1, i.e., s < b. An s with this property can be
selected if a + b > lip.
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4. Proof of Theorems 2 and 3.

4.1. For the proof of Theorem 2, \\ie consider the function

h(t) = /t/- r for ItI <:'" (II)

= h(t + 2..) for all t.

Then h E Lip (a,p) for a = (lip) - rand Cn (h) is exactly of order Inl H as n -c>- x

([1], I, p. 190). Suppose that a = (2 - p)ip, that is, r = I!q, then

:cn (h)1 ;:;;' Alnl H = A/nl- IP.

Now we use the following lemma due to Hardy and Littlewood ([1], II,
p. 129).

LEMMA. Suppose that Cn (g) = 0 for n <: 0 and Cn (g) decreases monotonically
to zero as n -c>- e:t:. Then g E LP ifand only if

L [cn(gWnP-
2 <: ex.

By this lemma, there is a function g E LV such that

Cn(g) = I/n1'q log (n + 1) for n > 0,

=0 otherwise. (l2)

For the functionsg and h defined by (11) and (12), we have

"" ""L Icn(f)1 = L Icn(g)I'lcn(h)1
n~I n~I

"" 1 1 "" 1
;:;;' A 2: nIlq log (n + 1) 'n-I-IP = A 2: n l~o~g-(-n-+-1) ~ oc.

n-I n~I

Thus the Fourier series off= g *h does not converge absolutely. This proves
the second part ofTheorem 2. The first part is now also evident, since integral
(3) diverges for h defined by (11) with r = I!q.

4.2. The following is known ([1], I, p. 215):

LEMMA. There is a sequence (En) ofsigns such that the series

(13)

belongs to every L' (s> 0).
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We define g by (12) and h as the sum (13). Then

= Ln(l/2)T(I/q) (:Og (n + 1»2 = x',

since li2 + liq < 1. Thus we get Theorem 3.
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